Introducing UHURA Project
The project UHURA is focusing on the unsteady flow behavior around high-lift systems.
It will for the first time deliver a deeper understanding of critical flow features at new types of high-lift devices for transport aircraft during their deployment and retraction together with a validated numerical procedure for their simulation.
Introduction
Krueger flaps are leading edge high-lift devices that enable laminar flow wing technology. From previous experiences, the suitability of the leading edge device is known for at least the steady flow of the fully deflected device.
Nevertheless the unsteady flow behaviour of such kind of device during deployment has not yet been investigated. UHURA aims to close this gap for the full deflection and retraction process.
UHURA is an EC-funded project in the framework of Horizon 2020. It is a follow-on of DeSiReH (2009-2013), where the type of leading edge device has been established, and the 7th Framework project AFLoNext (2015-2018), where it has been further matured.
Scope
UHURA aims to validate numeric simulation capabilities for the unsteady flow around high-lift systems during their deployment and retraction.
UHURA performs detailed experimental measurements in several wind tunnels to obtain a unique data set for validation purposes of Computational Fluid Dynamics (CFD) software, including detailed flow measurements by Particle Image Velocimetry (PIV) and other optical measurement technologies.
Advanced CFD methods promising significant improvements in the design lead time are validated against this database to obtain efficient and reliable prediction methods for the design phase.
News
Date | Topic |
---|---|
13.01.2022 |
The ONERA has prepared a very informative video of the Wind-Tunnel test campaign performed within UHURA in WP3 in 2021. |
27.04.2022 |
The UHURA-Consortium will organise a session on the 9th European Congress on Computational Methods in Applied Science and Engineering (ECCOMAS 2022) on the 5th-9th of June 2022. Details to this session can be found here.
|
April 2022 |
DLR-F15-LLE Model with Krüger flap mounted in open test section of DNW-LLF wind tunnel; group image at the end of the PIV test campaign April 2022 |
Gallery
Movies
Partners
The consortium of UHURA consists of 12 participants in total from eight European member states (Belgium, Czech Republic, France, Germany, Italy, Netherlands, Sweden, and Spain).
The project is coordinated by the DLR Institute of Aerodynamics and Flow Technology.
Publications
Author(s) | Title | Event / Journal/ Link |
---|---|---|
Wallin S, Hanifi A, Bagheri F | Meshing and CFD strategies for large scale turboprop WT model integrating morphing high-lift devices | 10th Aerospace Technology Congress, October 8-9, 2019, Stockholm, Sweden |
Ponsin J | Experiences of using LBM Xflow in the EU H2020 Project UHURA | 3DExperience Conference Design, Modeling & Simulation, March 11-12, 2020, Barcelona, Spain |
Wallin S, Iannelli P, Prachar A, Ponsin J | Unsteady CFD Results for Deflecting High-Lift Systems | 8th European Congress on Computational Methods in Applied Science and Engineering (ECCOMAS 2020), July, 19 – 24, 2020, Paris, France |
Wild J, Schmidt M, Vervliet A, Tanguy G | A 2D Validation Experiment for Dynamic High-Lift System Aerodynamics | |
J. Wild | Unsteady High-Lift Aerodynamics – Unsteady RANS Validation: An Overview on the UHURA Project | EASN International Conference on "Innovation in Aviation & Space to the Satisfaction of the European Citizens", 2nd to 4th of September 2020, virtual |
H. Maseland, J. Wild, H. van der Ven | Progress in Meshing for Dynamic High-Lift CFD | |
A. Prachar, R. Heinrich, A. Raichle, J.C. Kok, F. Moens, T. Renaud | Progress towards numerical simulation of the dynamic Krueger motion with Chimera methods | |
S. Chen, F. Bagheri, P. Eliasson and S. Wallin | Hybrid RANS-LES simulation of a deflecting Krüger device | |
F. Capizzano, T. Sucipto | A dynamic Immersed Boundary method for moving bodies and FSI applications | IOP Conf. Ser.: Mater. Sci. Eng. 1024 012049 DOI:10.1088/1757-899X/1024/1/012049 |
J Ponsin, C. Lozano | Progress towards simulation of Krueger devices motion with Lattice Boltzmann Methods | IOP Conf. Ser.: Mater. Sci. Eng. 1024 012050 DOI:10.1088/1757-899X/1024/1/012050 |
F. Capizzano, T. Sucipto | Studying the deployment of high-lift devices by using dynamic immersed boundaries | Aircraft Engineering and Aerospace Technology, Vol. 94 No. 1, pp. 99-111 DOI 10.1108/AEAT-12-2020-0325 |
J. Wild | Unsteady High-Lift Aerodynamics – Unsteady RANS Validation - An Overview on the UHURA Project | AEROSPATIAL 2020, October 15, 2020, virtual |
J. Wild, J. Ponsin | Unsteady High-Lift Aerodynamics – Unsteady RANS Validation - Progress of the UHURA Project | ECCOMAS CM3 Transport Workshop on Design in Aeronautics, November 22-24 2021, Barcelona, Spain |
Public Deliverables
The following list contains deliverables of UHURA that are public available and can be downloaded via the link.
Deliverable number | Title |
---|---|
D5.5 | D52-1 Mid-term dissemination summary |
D5.7 | D51-4 Midterm Assessment Report |
D5.10 | D52-2 2nd dissemination Report |
D5.15 | D52-3 Summary on dissemination activities during project runtime |
D5.16 | D51-10 Final Project Report |
Links
The following lists contains links to externally-hosted UHURA-specific websites.
- European Commission's Community Research and Development Information Service (CORDIS)
- European Climate, Infrastructure and Environment Executive Agency (europa.eu)
- Project webpage at IBK Innovation GmbH
- Czech Aerospace Research Center (VZLU)
- Project webpage at the Royal Institute of Technology in Stockholm
Contact
If you want to get in contact with the consortium, please feel free to use the form on this website.